Journal of Photochemistry, 2 (1973/74) 1-13 © Elsevier Sequoia S.A., Lausanne – Printed in Switzerland

THE SULPHUR DIOXIDE PHOTOSENSITIZED *CIS-TRANS* ISOMERIZATION OF BUTENE-2

R. A. COX

Health Physics and Medical Division, Atomic Energy Research Establishment, Harwell, Berks. (Gt. Britain)

(Received January 22, 1973; revised March 1, 1973)

SUMMARY

The photosensitized *cis-trans* isomerization of butene-2 in the presence of sulphur dioxide excited within its first allowed absorption band has been examined. Isomerization results primarily from the reaction of excited triplet SO_2 molecules (${}^{3}SO_2$) with butene-2 although there is some evidence for a reaction of excited singlet SO_2 with *cis*-2-butene leading to isomerization. The quenching rate constants for ${}^{3}SO_2$ with *cis*-butene-2 and *trans*-butene-2 relative to SO_2 were determined from measurements of the quantum yields for photosensitized isomerization at high $[SO_2]/[butene-2]$ ratios. The rate constants for the reaction:

 $^{3}SO_{2}$ + butene-2(cis or trans) \rightarrow SO₂+x trans-butene-2+(1-x) cis-butene-2

were $1.62 \pm 0.08 \times 10^{11}$ 1 mol⁻¹ s⁻¹ for the *cis* isomer and $1.42 \pm 0.09 \times 10^{11}$ 1 mol⁻¹ s⁻¹ for the *trans* isomer based on the literature value of 3.9×10^{8} 1 mol⁻¹ s⁻¹ for the absolute rate constant for the reaction of ${}^{3}SO_{2}$ with SO₂. The value of x, the fraction of *trans* isomer formed in the isomerization, was 0.587 + 0.028.

The cis-trans isomerization of butene-2 provides a useful method for the determination of ${}^{3}SO_{2}$ yields in SO₂ photolysis in the first allowed absorption band. At the pressure and wavelength used in the present study, the quantum yield for the production of ${}^{3}SO_{2}$ molecules was 0.112 ± 0.006 .

INTRODUCTION

In order to calculate the absolute amount of light absorbed by SO₂ in the cell a correction was made for reflective losses and also loss due to the non-parallel light beam. Considering the geometry of the system and using published data for reflective losses, the expected losses amounted to $30-40^{\circ}/_{0}$ of the transmitted light. Actinometric measurements of the transmitted light, I_t , and of the incident light, I_0 (with the reaction vessel removed and replaced by the actinometer cell) made at the end of the experimental work gave a loss factor of $I_0/I_t = 1.53$. The absorbed light intensity (in μ Einsteins min⁻¹) was compared with the observed difference in photocell readings (mV) and a calibration factor of $1.36 \,\mu$ E min⁻¹ mV⁻¹ obtained. The absorbed light intensity (at 30 Torr SO₂) was 9.25×10^{16} photons min⁻¹ and the estimated overall error in the quantum yields arising from the measurement of

A Pye 'Series 104' gas chromatograph, equipped with a F.I.D. detector and a gas sampling valve, was used for gas chromatographic analysis of the butene-2 isomers. The *cis*- and *trans*-isomers were separated at room temperature on a 6 m column packed with dinonylphthalate on Celite. Calibration was carried out using samples of pure *cis*- and *trans*-butene-2 from the reaction cell using a standard sampling technique. The peak-area response was linear up to 15 Torr butene-2 in the reaction cell and the reproducibility for both calibration and reaction samples was better than $\pm 2\%$ on successive samples. The calibration did not vary by more than 6% during the course of the experiments.

In a typical experiment the required gas mixture was made up in the previously evacuated cell and, after allowing to mix, a sample was withdrawn and analyzed to check the initial butene-2 composition. After irradiation, the cell contents were allowed to mix for 10–15 min and duplicate samples were analyzed. The amount of isomerization was determined from the increase in peak area of the *trans* (or the *cis*) isomer during the irradiation. In each case a correction was made for the sample removed from the reaction vessel. For the quantum yield determinations the extent of isomerization was kept as far as possible at less than 5%; when large conversions were obtained a small correction was made for the reverse reaction. The rate of isomerization was calculated in units of μ mol min⁻¹.

In each experiment the light transmitted through the cell was measured with the photodiode. The difference in readings (mV) with and without the gas mixture present was converted to absorbed intensity (μ Einsteins min⁻¹) using the calibration factor.

the light absorbed was $\pm 6\%$.

Fig. 1. The isomerization of butene-2 during the photolysis of SO₂-cis-butene-2 (filled points, $\lambda = 290-330$ nm) and SO₂-trans-butene-2 mixtures (open points, $\lambda = 311.5$ nm). Δ , cis-butene-2; O, trans-butene-2; X, butene-1 (measured in cis-butene-2-SO₂ photolysis only).

sorbed light intensity during the initial period was $0.71 \ \mu E/min$. During the first 200 min samples were taken at regular intervals and duplicate samples were taken after overnight irradiation. A fast *cis-trans* isomerization reaction occurred with a much slower formation of butene-1. The isomerization reaction approached completion after 3 hours and, after overnight irradiation, a photostationary state was obtained with a final ratio of *trans*-butene-2/*cis*-butene-2 of 1.52. The same photostationary composition was obtained after prolonged irradiation of *trans*-butene-2 (0.32 Torr) with 32.5 Torr SO₂ using the 311.5 nm band.

In the experiment with *cis*-butene-2, the quantum yield for *trans*-butene-2 formation $(\Phi_{\rm T})$ in the initial stages was 0.103 and for butene-1 formation $\Phi({\rm C_4H_8-1}) = 1.4 \times 10^{-4}$. An estimate of the quantum yield for sulphinic acid formation was made from the decline in total butene concentration during the overnight irradiation. The value of $\Phi_{\rm RSO_4H}$ was 7.0×10^{-3} which is lower than the value reported by Dainton and Ivin $(33 \times 10^{-3})^2$.

A series of quantum yield determinations at 311.5 nm were made over a range of butene-2 pressures with an essentially constant SO₂ pressure of 31 ± 4 Torr^{*}. Irradiation times were from 3 to 60 min depending on the amount of butene present. All experiments were conducted at $23 \pm 2^{\circ}$ C. Most of the determinations were made with *cis*-butene-2 present initially but a few measurements of the *trans* \rightarrow *cis* isomerization were carried out. Table 1 shows the quantum yields for the various reaction conditions.

TABLE 1

Initial pressures (Torr)		Isomerization rate $\times 10^{-2}$	I _{abs} (µEinstein min⁻¹)	Quantum yield $\Phi_{\rm T}$ (or $\Phi_{\rm C}$)			
SO ₂	Butene-2	(μ mol min ⁻¹)		× 10 ⁻²			
33.1	34.50 (cis)	3.16	0.159	19.90			
32.4	15.60	2.40	0.162	14.80			
28.4	13.03	2.41	0.152	15.80			
31.8	7.70	2.31	0.172	13.40			
28.2	4.37	1.53	0.144	10.64			
34.4	2.38	1.72	0.172	10.00			
29.4	1.05	1.23	0.156	7.84			
29.9	0.495	0.920	0.159	5.78			
30.3	0.300	0.822	0.161	5.12			
30.2	0.215	0.775	0.161	4.83			
30.7	0.108	0.648	0.163	3.97			
30.5	0.086	0.575	0.163	3.52			
29.8	0.065	0.486	0.153	3.18			
30.6	0.039	0.366	0.163	2.24			
31.1	0.340 (trans)	0.531	0.139	3.82			
32.4	0.205 (trans)	0.433	0.139	3.11			
32.5	0.078 (trans)	0.294	0.138	2.13			
32.4	0.048 (trans)	0.242	0.149	1.62			

QUANTUM YIELDS FOR THE	SO_2 photosensitized	ISOMERIZATION OF	cis-AND	trans-BUTENE-2
------------------------	------------------------	------------------	---------	----------------

DISCUSSION

Excitation of SO_2 in the first allowed absorption region leads to the formation of both excited singlet (1SO_2) and triplet (3SO_2) molecules. On the basis of previous work on SO_2 photochemistry, the following mechanism involving these states will be considered for discussion of the present results:

$$SO_{2} \xrightarrow{h\nu} {}^{h\nu} \rightarrow {}^{1}SO_{2} \qquad I_{abs}$$

$${}^{1}SO_{2} + SO_{2} \rightarrow SO_{2} + SO_{2} \qquad (1a)$$

$$\rightarrow {}^{3}\mathrm{SO}_{2} + \mathrm{SO}_{2}$$
 (2a)

 $^{1}\mathrm{SO}_{2} + cis - \mathrm{C}_{4}\mathrm{H}_{8} - 2 \quad \rightarrow \mathrm{SO}_{2} + cis - \mathrm{C}_{4}\mathrm{H}_{8} - 2 \tag{1b}$

$$\Rightarrow {}^{3}\mathrm{SO}_{2} + cis \cdot \mathrm{C}_{4}\mathrm{H}_{8} \cdot 2 \tag{2b}$$

^{*} The SO₂ pressure was held constant to minimize uncertainties in the estimation of the absorbed light intensity.

$$^{3}\mathrm{SO}_{2} + \mathrm{SO}_{2} \longrightarrow \mathrm{SO}_{2} + \mathrm{SO}_{2}$$
 (8a)

$$\rightarrow SO_3 + SO$$
 (8b)

$$^{3}\text{SO}_{2} + cis\text{-C}_{4}\text{H}_{8}\text{-}2 \rightarrow \text{SO}_{2} + x \text{ trans-C}_{4}\text{H}_{8}\text{-}2 + (1-x) \text{ cis-C}_{4}\text{H}_{8}\text{-}2$$
 (9a)

$$\rightarrow SO_2 + C_4H_8-1 \tag{9b}$$

$$\rightarrow C_4 H_8 SO_2$$
 (butenesulphinic acid) (9c)

$$^{3}SO_{2} + trans-C_{4}H_{8}-2 \rightarrow SO_{2} + x trans-C_{4}H_{8}-2 + (1-x)cis-C_{4}H_{8}-2$$
 (9')

Quenching of ${}^{1}SO_{2}$ by SO₂ and other gases occurs at a rate close to the collision frequency⁶. The fraction of collisions which result in ${}^{3}SO_{2}$ formation $[k_{2}/(k_{1} + k_{2})]$ depends on the nature of the collision partner⁷ and, to a small extent on the excitation wavelength⁸. At 287.5 nm the fraction $k_{2}/(k_{1} + k_{2})$ is 0.095 ± 0.005 , 0.073 ± 0.024 and 0.033 ± 0.008 for SO₂, cyclohexane and N₂ respectively⁷. No data are available for olefins. Quenching of ${}^{3}SO_{2}$ by SO₂ is a rather slow reaction⁹ ($k_{8} = k_{8a} + k_{8b} = 3.9 \pm 0.1 \times 10^{8} 1 \text{ mol}^{-1} \text{ s}^{-1}$). Results from this laboratory¹⁰ have indicated that only a small fraction (~ 4%) of the ${}^{3}SO_{2}$ -SO₂ collisions result in chemical reaction to yield SO₃ *i.e.* $k_{8a} \simeq 25 k_{8b}$. Quenching of ${}^{3}SO_{2}$ by olefins, however, is very fast. Sidebottom *et al.*⁴ obtained a value of $1.34 \pm 0.10 \times 10^{11} 1 \text{ mol}^{-1} \text{ s}^{-1}$ for the total quenching rate constant for *cis*-butene-2 ($k_{9a} + k_{9b} + k_{9c}$) which is close to the collision number.

From the present results it is clear that reactions (9b) and (9c) are only minor pathways compared to (9a). The rate of isomerization of *cis*-butene-2 at small conversions is therefore given by:

$$R_{\rm T} = xk_9[^3{\rm SO}_2] [cis-C_4{\rm H}_8]$$

where $k_9 = k_{9a}$ and x is the fraction of the *cis*-butene-2 which is isomerized in reaction (9a). Application of steady state treatment for the concentrations of ¹SO₂ and ³SO₂ yields the following expression:

$$R_{\rm T} = xk_9[cis-C_4H_8] \left\{ \frac{(k_{2a}[SO_2] + k_{2b}[cis-C_4H_8])}{(k_8[SO_2] + k_9[cis-C_4H_8])} \times \frac{I_{abs}}{(k_{1a} + k_{2a})[SO_2] + (k_{1b} + k_{2b})[cis-C_4H_8]} \right\} (i)$$

For high $[SO_2]/[cis-C_4H_8]$ ratios such that essentially all the ¹SO₂ molecules are quenched by SO₂ the following expression may be derived for the quantum yield, Φ_T

$$\frac{1}{\Phi_{\rm T}} = \frac{k_{1\rm a} + k_{2\rm a}}{xk_{2\rm a}} \left\{ \frac{k_8 [\rm SO_2]}{k_9 [\it cis-C_4H_8]} + 1 \right\}$$
(ii)

A similar expression can be derived for the quantum yield for *trans* \rightarrow *cis* isomerization:

$$\frac{1}{\Phi_{\rm c}} = \frac{k_{1\rm s} + k_{2\rm a}}{(1-x)k_{2\rm a}} \left\{ \frac{k_{\rm g}[{\rm SO}_2]}{k_{\rm g}[trans-{\rm C}_4{\rm H}_{\rm g}]} + 1 \right\}$$
(iii)

Figure 2 shows the quantum yield data plotted according to eqns. (ii) and (iii). A linear relationship was obtained for both the $cis \rightarrow trans$ and the $trans \rightarrow cis$ isomerization at $[SO_2]/[C_4H_8]$ ratios greater than 50. The rate constant ratios k_8/k_9 and $k_8/k_{9'}$ were determined from the slope/intercept ratios and the absolute values of k_9 and $k_{9'}$ were computed using the literature value⁹ for k_8 . Table 2 shows the quantities determined from Fig. 2, which confirm the very rapid quench-

TABLE 2

RATE CONSTANTS FOR ${}^3\mathrm{SO}_2$ quenching by butene-2 from Fig. 2

Fig. 2. Plot of the reciprocal of the quantum yield for photosensitized isomerization vs. the ratio of the initial pressures of SO₂ and butene-2 for the 311.5 nm photolysis of SO₂-butene-2 mixtures. (Initial pressure of SO₂ = 31 ± 3 Torr.)

ing of ${}^{3}SO_{2}$ by the butene-2 isomers^{*}. The *cis* isomer appears to react slightly more rapidly than the *trans* isomer and the absolute value of k_{9} is slightly higher than the value determined from phosphorescence quenching $(1.34 \pm 0.10 \times 10^{11} \text{ l} \text{ mol}^{-1} \text{ s}^{-1})^{4}$.

The intercepts of Fig. 2 may be used to determine x, the fraction of *trans*-2butene formed in the quenching reaction (9), and the rate constant ratio $k_{2a}/(k_{1a} + k_{2a})$ *i.e.* the fraction of ${}^{1}SO_{2}-SO_{2}$ collisions which result in intersystem crossing.

The value obtained for x is 0.587 ± 0.028 indicating that formation of the *trans* isomer is favoured compared with the *cis* isomer. This result, combined with the slightly higher quenching rate constant for *cis*-C₄H₈-2, explains the observed *trans/cis* ratio in the equilibrium photostationary state after prolonged irradiation. At equilibrium:

$$(1-x)k_{9}, [trans-C_{4}H_{8}] = xk_{9}[cis-C_{4}H_{8}-2]$$

$$\frac{[trans]}{[cis]} = \frac{xk_{9}}{(1-x)k_{9}'} = 1.62 \pm 0.16$$

This compares well with the observed ratio of 1.52.

The rate constant ratio $k_{2a}/(k_{1a} + k_{2a})$ was 0.112 ± 0.006 which is slightly higher than previous estimates of this quantity at lower excitation wavelengths ^{7,8}. Previous studies have indicated that triplet sulphur dioxide production by reaction (2a) may depend on the excitation wavelength and, more recently, a dependence on total pressure has been found. The present value appears to be the first measurement at 311 nm and further work is required before the wavelength dependence of the ³SO₂ production rate can be ascertained.

It will be noted on Fig. 2 that the quantum yields at low $[SO_2]/[cis-C_4H_8]$ ratios ($\lesssim 30$) show a departure from eqn. (ii) in a sense that Φ_T increases rapidly as the $[SO_2]/[cis-C_4H_8]$ ratio decreases. For these conditions essentially all the ${}^{3}SO_2$ molecules are quenched by $cis-C_4H_8-2$ and eqn. (i) reduces to:

$$R_{\rm T} = x \left\{ \frac{(k_{2a}[{\rm SO}_2] + k_{2b}[cis-{\rm C}_4{\rm H}_8]) I_{abs}}{(k_{1a} + k_{2a}) [{\rm SO}_2] + (k_{1b} + k_{2b}) [cis-{\rm C}_4{\rm H}_8]} \right\}$$
(iv)

which, by rearrangement gives:

$$\Phi_{\rm T}\left\{\frac{(k_{1\rm a}+k_{2\rm a})}{(k_{1\rm b}+k_{2\rm b})}\frac{[{\rm SO}_2]}{[cis-{\rm C}_4{\rm H}_8]}+1\right\} = \frac{xk_{2\rm a}}{k_{1\rm b}+k_{2\rm b}}\cdot\frac{[{\rm SO}_2]}{[cis-{\rm C}_4{\rm H}_8]}+\frac{xk_{2\rm b}}{k_{1\rm b}+k_{2\rm b}}\,({\rm v})$$

In order to test this relationship a knowledge of the relative total quenching rate constants for SO₂ and *cis*-C₄H₈ is required [*i.e.* the ratio $(k_{1a} + k_{2a})/(k_{1b} + k_{2b})$]. The fluorescence quenching measurements of Mettee^{6a} showed that simple poly-

^{*} Error limits given refer to 95% confidence limits from least squares analysis. The absolute error may be somewhat higher in view of the uncertainty associated with the light intensity measurement.

atomic gases quench ${}^{1}SO_{2}$ at closely similar rates. As a first approximation, therefore, the quantum yield data for $[SO_{2}]/[cis-C_{4}H_{8}] < 20$ were plotted according to eqn. (v) assuming $(k_{1a} + k_{2a})/(k_{1b} + k_{2b}) = 1$ (Fig. 3). Although there was some scatter in the data, an approximately linear relationship was obtained. The least squares regression line had a slope of 0.0856 ± 0.0036 and an intercept of 0.295 ± 0.024 . Using x = 0.587 the value of the ratio $k_{2a}/(k_{1b} + k_{2b})$ [which on

Fig. 3. Plot of the quantity $\Phi_{trans} \times \{1 + [SO_2]/[cis-C_4H_8]t vs.$ the ratio of the initial pressures of SO₂ and cis-2-butene for the 311.5 nm photolysis of SO₂-cis-butene-2 mixtures.

the above assumption is equal to $k_{2a}/(k_{1a} + k_{2a})$] derived from the slope is 0.146 ± 0.010 which is somewhat higher than the value derived from the data at high $[SO_2]/[cis-C_4H_8]$. The value of $k_{2a}/(k_{1a} + k_{2a})$ determined in this way is not very sensitive to the choice of the ratio $(k_{1a} + k_{2a})/(k_{1b} + k_{2b})$.

According to the mechanism chosen, the intercept on Fig. 3 gives a measure of the fraction of ${}^{1}SO_{2}$ -*cis*-C₄H₈ collisions which result in intersystem crossing to ${}^{3}SO_{2}$. The value obtained for $k_{2b}/(k_{1b} + k_{2b})$ using x = 0.587 is 0.502 ± 0.048 which is unexpectedly high when compared to the value of 0.073 ± 0.024 found for cyclohexane, an organic molecule of similar molecular weight to *cis*-butene-2. However, it should be noted that this result depends on the chosen value of $(k_{1a} + k_{2a})/(k_{1b} + k_{2b})$. The data for low $[SO_2]/[cis-C_4H_8]$ ratios could be equally represented by an equation analogous to eqn. (v) if, instead of reactions (1b) and (2b), a reaction between 1SO_2 and $cis-C_4H_8$ leading to isomerization is formulated:

$${}^{1}SO_{2} + cis-C_{4}H_{8} \rightarrow SO_{2} + x trans-C_{4}H_{8} + (1-x)cis-C_{4}H_{8}$$
 (2')

In this case the following expression is obtained:

$$\frac{\Phi_{\rm T}}{x} \left\{ \frac{k_{1\rm a} + k_{2\rm a}}{k_{2'}} \frac{[{\rm SO}_2]}{[cis-{\rm C}_4{\rm H}_8]} + 1 \right\} = \frac{k_{2\rm a}}{k_{2'}} \frac{[{\rm SO}_2]}{[cis-{\rm C}_4{\rm H}_8]} + 1$$
(vi)

Data plots of eqn. (vi) were made using several values of $(k_{1a} + k_{2a})/k_2$, in the range 0.5 to 4.0. The "best" fit of the data to eqn. (vi) (*i.e.* giving unit intercept) was obtained using $(k_{1a} + k_{2a})/k_{2'} = 2.7$. This is felt to be too high in view of the result of Sidebottom (unpublished measurements quoted in ref. 11) that the rate constant for ¹SO₂ quenching by benzene is about twice that for SO₂. Using $(k_{1a} + k_{2a})/(k_{1b} + k_{2b}) = 0.5$ the values of $k_{2a}/(k_{1a} + k_{2a})$ and $k_{2b}/(k_{1b} + k_{2b})$ (on the basis of eqn. v) are 0.135 ± 0.012 and 0.400 ± 0.033 respectively. This still indicates an unexpectedly high ${}^{3}SO_{2}$ production rate in ${}^{1}SO_{2}$ -cis-C₄H₈ collisions and a possible role of ${}^{1}SO_{2}$ in the photosensitized isomerization cannot be entirely dismissed on the basis of the present results.

The participation of additional non-emitting excited states of SO_2 in the photochemical reactions of SO_2 excited in the first allowed absorption region has recently been suggested by Cehelnik *et al.* to explain the quantum yields for CO_2 formation in the 313 nm photolysis of SO_2 -CO mixtures¹². CO_2 formation is believed to result from reactions of a non-emitting singlet (SO_2^*) and a triplet (SO_2^{**}) with little or no contribution from the optically active 1SO_2 and 3SO_2 states. Calvert and coworkers¹¹ have also studied the SO_2 -CO system and find that an additional excited state (or isomer) of SO_2 is required to explain the data. They propose, however, that CO_2 formation only results from reactions of 1SO_2 and 3SO_2 molecules which increases with pressure. On this basis the triplet SO_2 production rates determined at low total pressures (such as have been used in emission studies) might be expected to be lower than those determined at higher pressures.

The unexpectedly high isomerization rates at low $[SO_2]/[cis-C_4H_8]$ ratios may also be attributed to the participation of an additional excited state either by enhanced 3SO_2 formation or by a direct reaction with butene-2 leading to isomerization. Further work including a study of the effect of total pressure on Φ_T and also an independent determination of the 1SO_2 quenching rate constants for the butene-2 isomers is necessary in order to elucidate the isomerization mechanism at low $[SO_2]/[cis-C_4H_8]$ ratios. The data at high $[SO_2]/[C_4H_8]$ ratios are entirely consistent with the proposed mechanism involving the rapid addition of 3SO_2 molecules to butene-2 to give a diradical. The following decay processes of the diradical may be formulated:

From the observed quantum yields for isomerization, sulphinic acid and butene-1 formation, the relative rates of processes (1), (2), (3) are 1:0.068:0.0014 respectively. These are entirely consistent with the proposed reactions when the stereochemistry of the rearrangements are taken into account.

The alternative description given by Cundall and Palmer³ for the isomerization reaction is triplet energy transfer from ${}^{3}SO_{2}$ to butene-2:

³SO₂ + C₄H₈-2(*cis* or *trans*)
$$\rightarrow$$
 C₄H₈* (triplet)
C₄H₈* (triplet) \rightarrow C₄H₈-2 (*cis* or *trans*)

The gas phase *cis-trans* isomerization of butene-2 in the presence of a number of photosensitizers (*e.g.* Hg6³P₁, benzene, pyridine etc.) can best be interpreted in terms of a triplet energy transfer reaction yielding an olefin triplet which gives either the *cis* or *trans* isomer with equal probability upon deactivation¹³. With ³SO₂ the probability of formation of the *trans* isomer was greater than for the *cis* isomer. This may reflect the smaller amount of energy carried by ³SO₂ (73.7 kcal mol⁻¹) compared with the other sensitizers (Hg6³P₁ = 112.2 kcal; benzene and pyridine = 85 kcal), a factor which is known to influence the photostationary composition in photosensitized isomerizations in the liquid phase¹³. On the other hand, the higher probability of *trans* isomer formation may result from the formation of a C₄H₈SO₂ diradical as suggested by Sidebottom *et al.* It is, however, very difficult to distinguish between energy transfer and reversible radical addition and further speculation regarding the detailed ³SO₂-olefin interaction is not justified on the basis of the present results.

The present study has demonstrated that the SO_2 photosensitized isomerization of *cis* (or *trans*) butene-2 provides a convenient method for the determination of the 3SO_2 yields in SO_2 photolysis systems in the first allowed absorption region. As indicated above, recent evidence suggests that the yield of 3SO_2 in these systems depends on both the nature of the gases present and on the total pressure. The 3SO_2 yield in the presence of the atmospheric gases at pressures of 1 atm is of particular interest since this will determine the photochemical reactivity of SO_2 in the atmosphere. It is proposed to extend the present study to obtain this information.

ACKNOWLEDGEMENT

This work was carried out as part of the Atmospheric Pollution programme at A.E.R.E., Harwell formerly sponsored by the Department of Trade and Industry and now by the Department of the Environment.

REFERENCES

- 1 G. M. Bristow and F. S. Dainton, Proc. Roy. Soc., A229 (1955) 525.
- 2 F. S. Dainton and K. J. Ivin, Trans. Faraday Soc., 46 (1950) 374, 382.
- 3 R. B. Cundall and T. F. Palmer, Trans. Faraday Soc., 56 (1960) 1211.
- 4 H. W. Sidebottom, C. C. Badcock, J. G. Calvert, B. R. Rabe and E. K. Damon, J. Am. Chem. Soc., 93 (1971) 3121.
- 5 J. G. Calvert and J. N. Pitts, Jr., Photochemistry, Wiley, New York, 1966.
- 6 (a) H. D. Mettee, J. Chem. Phys., 49 (1968) 1784; J. Phys. Chem., 73 (1969) 1971.
 (b) S. J. Strickler and D. B. Howell, J. Chem. Phys., 49 (1968) 1947.
 (c) T. N. Rao, S. S. Collier and J. G. Calvert, J. Am. Chem. Soc., 91 (1969) 1609, 1616.
- 7 A. Horowitz and J. G. Calvert, Int. J. Chem. Kinet., 4 (1972) 175, 191.
- 8 T. N. Rao and J. G. Calvert, J. Phys. Chem., 74 (1970) 681.
- 9 H. W. Sidebottom, C. C. Badcock, J. G. Calvert, G. W. Reinhardt, B. R. Rabe and E. K. Damon, J. Am. Chem. Soc., 93 (1971) 2587.
- 10 R. A. Cox, J. Phys. Chem., 76 (1972) 814.
- 11 F. B. Wampler, A. Horowitz and J. G. Calvert, J. Am. Chem. Soc., 94 (1972) 5523.
- 12 E. Cehelnik, C. W. Spicer and J. Heicklen, J. Am. Chem. Soc., 93 (1971) 5371.
- 13 R. B. Cundall, in G. Porter, (ed.) Progress in Reaction Kinetics, Vol. 2, Pergamon Press, Oxford, 1964, p. 208.